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Entanglement of Atomic Ensembles by Trapping Correlated Photon States
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We describe a general technique that allows for an ideal transfer of quantum correlations between light
fields and metastable states of matter. The technique is based on trapping quantum states of photons in
coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss
possible applications such as quantum state memories, generation of squeezed atomic states, preparation
of entangled atomic ensembles, quantum information processing, and quantum networking.
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One of the most intriguing aspects of quantum theory
is the possibility to entangle quantum states of separated
objects. Recently these ideas led to many interesting new
concepts such as quantum cryptography [1], teleportation
[2], and quantum computation [3]. Photons are the fastest,
simplest, and very robust carriers of quantum information
[4], but they are difficult to store.

This Letter describes a technique that allows one to
transfer quantum correlations from traveling-wave light
fields to collective atomic states and vice versa with nearly
ideal efficiency. This is achieved by adiabatically reduc-
ing the group velocity of light to zero, thereby “trapping”
the photons in the medium. Specifically, we use intracav-
ity electromagnetically induced transparency (EIT) [5,6] in
which the properties of a cavity filled with L-type atoms
can be manipulated by an external (classical) field [7].

Once the transfer is completed, the atomic ensemble
“stores” all photons including their quantum correlations
in metastable many-atom states. Consequently, a proce-
dure of this kind can be used to generate nonclassical states
of atoms, and to entangle two or more ensembles by map-
ping entangled photon wave packets onto separated atomic
systems. In addition to fundamental aspects, this makes
applications in low-noise spectroscopy [8] and quantum
teleportation of collective atomic states [2] feasible. Fur-
thermore, the atomic excitations can be manipulated over
a long period of time, which opens up interesting possi-
bilities for information processing [3]. Finally, the stored
quantum states can be transferred back to light by revers-
ing the storage procedure.

The present contribution is motivated by recent experi-
ments, in which EIT has been used to dramatically re-
duce the group velocity of light pulses [9,10]. Adiabatic
passage has already been considered for manipulation of
single atoms in the context of cavity QED [11]. In con-
trast, the method described here involves an optically dense
many-atom system and does not require a strong-coupling
regime. In the present system, single photons couple to
collective excitations associated with EIT, and the cor-
responding coupling strength can exceed that of an in-
dividual atom by orders of magnitude. As opposed to
approaches involving the partial transfer of correlations by
0031-9007�00�84(18)�4232(4)$15.00
dissipative means [12,13], the present method is state pre-
serving, completely coherent, and reversible.

To illustrate the technique, consider a single-mode cav-
ity filled with a large number of coherently driven L-type
atoms as shown in Fig. 1a. One transition is coupled by the
quantum cavity field, whereas the other is driven by a clas-
sical coherent field of Rabi frequency V�t�. Under con-
ditions of two-photon resonance, the driving field induces
transparency [6] for the cavity field and the associated lin-
ear dispersion can substantially reduce its group velocity
[9]. This leads to a dramatic enhancement of the effec-
tive storage time limited only by the lifetime of the dark
state [5]. We note that narrow two-photon resonance can
be achieved also in a Doppler-broadened medium if both
fields have similar frequencies and are copropagating. In
this case a ring cavity must be used. The Hamiltonian of
the cavity 1 N-atom system can be written in terms of col-
lective operators Ŝab �

PN
i�1 ŝ

i
ab and Ŝac �

PN
i�1 ŝi

ac as

H � h̄gâŜab 1 h̄V�t�Ŝac 1 H.c. , (1)

where ŝi
mn � jm�ii�nj is the flip operator of the ith atom

between states jm� and jn�. g is the coupling constant
between the atoms and the field mode (vacuum Rabi

FIG. 1. (a) Optical cavity with single output mirror filled with
large number of L-type atoms. External coherent field of Rabi
frequency V�t� is used to control properties of resonator sys-
tem. Input field state is transferred back and forth to atomic
system via Raman adiabatic passage from states jb� to state jc�.
(b) Generation of entangled atomic ensembles using correlated
photons. (c) Multistate atoms for trapping correlated photons of
right and left circular polarizations.
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frequency) which for simplicity is assumed to be equal for
all atoms. Here and below, we work in a frame rotating
with optical frequencies. This Hamiltonian has a family of
dark states that are decoupled from both optical fields:

jD, n� �
nX

k�0

s
n!

k!�n 2 k�!
�2g�kNk�2Vn2k

�g2N 1 V2�n�2

3 jn 2 k� jck� .

They are composed of field states with jn 2 k� photons
and symmetric Dicke-like atomic states jck� containing k
atoms in level jc�, and all others in the ground state jb�:

jc0� � jb1 · · · bN �, jc1� �
NX

i�1

21
p

N
jb1 · · · ci · · · bN � ,

jc2� �
NX

ifij�1

1p
2N�N 2 1�

jb1 · · · ci · · · cj · · · bN �, etc.

We here assumed that the number of atoms is much larger
than the number of photons. The states jD, n� corre-
spond to elementary excitations of bosonic quasiparticles,
so-called dark-state polaritons [7].

The adiabatic transfer is based on the asymptotic behav-
ior of the dark states in the two limiting cases:

jD, n� ! jn� jc0�, when V ¿ g
p

N , (2)

jD, n� ! j0� jcn�, when V ø g
p

N . (3)

For a sufficiently strong coherent driving field, the atoms
do not interact with light, and the dark state coincides with
the “bare” cavity mode and all atoms being in the ground
state. In this limit photons can “leak” in and out of the
cavity as if it would be empty. In the opposite limit,
the dark state is a purely atomic state with no photons in
the cavity. In this case the lifetime of excitations will not
be sensitive to cavity decay; it will be limited solely by
the decay of the metastable atomic states. It is important
that by varying V�t�, and, consequently, by changing the
linear dispersion in the medium, the state of the combined
atom 1 cavity system can be changed from cavitylike (in
which excitation is mostly of photon nature) to atomlike (in
which excitations are shared among the atoms). Since all
dark states are orthogonal to each other, the ideal storing
procedure (as discussed below) will transform any super-
position of photon states into corresponding superpositions
of atomic states:X

i

ai ji� jc0� !
X

i

ai j0� jci� . (4)

Before proceeding with a detailed description of the
technique, we note that the above results can be easily gen-
eralized to the case of two atomic ensembles, which can
be entangled by trapping two entangled components of a
photon field. In this case the atoms are placed either in the
same or in two different optical cavities (Fig. 1b). The dark
states are then the direct product of those corresponding to
the subsystems: jD, n, m� � jDr , nr � jDl , ml�. Hence, the
following operation can be accomplished:X

nm
anmjnm� jc0

r � jc0
l � !

X
nm

anmj0� jcn
r � jcm

l � . (5)

It is clear that trapping perfectly entangled photon states
will result in perfectly entangled atomic ensembles.

Yet another related situation involves trapping the states
of two different field components within atoms of the same
species. Here, the two fields interact with more complex
atoms, such as those shown in Fig. 1c. By using essentially
the same arguments as above, one finds that a perfect state
transfer of the two fields to the atoms yieldsX

nm
anmjnm� jc0

rc0
l � !

X
nm

anmj0� jcn
r cm

l � . (6)

The potential significance of the last scheme is that the
correlations and the entanglement of the two fields can be
manipulated, since they are now stored within the same
atomic ensemble. This is of importance for information
processing, in particular, for quantum logic devices.

We now describe and analyze the adiabatic procedure
by which an input traveling-wave quantum field can be
captured, stored, and released. To this end, we consider a
quasi-1D system, include the continuum of the free-space
plane-wave modes (with creation operators b

y
k ), and model

the coupling of these modes to the cavity by an effective
Hamiltonian V � h̄

P
k kâyb̂k 1 h.c. k is the coupling

constant. The initial state of the free field is taken to be
jCin� �

P
k j

1
k j1k� 1

P
k,m j

2
k,mj1k1m� 1 . . . . It is con-

venient to work with correlation amplitudes, i.e., Fourier
transforms of j

j
k···l:

Fj�t1 · · · tj� � �0jÊ�t1� · · · Ê�tj� jC� ,

where Ê�t� � �L�2pc�
R

dvk exp�ivkt�b̂k , and L is the
quantization length. For example, F1 describes the enve-
lope of a single photon wave packet, F2 is the coincidence
amplitude, etc. We now consider a broad class of pulsed
fields described by a single envelope h�t� such that

Fj�t1, t2, . . . , tj� � aj

p
j! h�t1�h�t2� · · · h�tj� . (7)

The quantum state of such pulses can be described by
a rank-2 density matrix rnm � a�

nam. The correspond-
ing mode function is a superposition of plane waves
proportional to h�z�c� �

R
dvk jkeivkz�c. When the

pulses interact with the combined system of cavity mode
and atoms, the states ajjcj� are excited. We proceed
by deriving the equations of motion for the probability
amplitudes in the basis of dark and orthogonal bright
states. The bright states as well as the excited states
(containing components of states jai . .�) are then adia-
batically eliminated. The remaining amplitudes of dark
states and free-field components form a Dicke-like lad-
der. The ladder states are coupled to each other with
the time-dependent coupling strength k cosu�t�, where
cosu�t� � V�t��

p
V�t�2 1 g2N .
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In the case when only single-photon pulses are involved,
the evolution equations are [14]

�D1�t� � ik cosu�t�
X
k

jk�t� , (8)

�jk�t� � 2iDk jk�t� 1 ik cosu�t�D�t� . (9)

We proceed by formally integrating Eq. (9), substituting
the result into Eq. (8), and invoking a Markov approxima-
tion. Assuming that no photons arrive to the cavity before
t0, we find for the dark-state amplitude D1�t� � 2ia1d�t�
with

d�t� �

r
g

c
L

Z t

t0

dt cosu�t�h�t�

3 exp

Ω
2

g

2

Z t

t
dt0 cos2u�t0�

æ
, (10)

and for the input-output relation,

hout�t� � h�t� 2
p

gL�c d�t� , (11)

where hout�t� is the pulse shape of the outgoing wave
packet. Here we have introduced the empty-cavity de-
cay rate g � k2L�c. In order to trap photons, we require
hout�t� � �hout�t� � 0. Differentiating Eqs. (10) and (11)
yields

2
d
dt

ln cosu�t� 1
d
dt

lnh�t� �
g

2
cos2u�t� . (12)

If V�t� is chosen such that cosu�t� obeys Eq. (12) with
the asymptotic condition cosu ! 0, the output field re-
mains zero. The above condition corresponds to a dynami-
cal impedance matching [14]. The term on the right-hand
side is the effective cavity decay rate reduced due to in-
tracavity EIT [5]. The first term on the left-hand side of
Eq. (12) describes internal “losses” due to coherent Raman
adiabatic passage and the second term is due to the time
dependence of the input field. As in the case of classical
impedance matching [15], Eq. (12) reflects the condition
for complete destructive interference resulting in a vanish-
ing outgoing wave. Solving Eq. (12) yields

cos2u�t� �
h2�t�

g
Rt

2` dt h2�t�
, (13)

which corresponds to d�t ! 1`� ! 1 (see Fig. 2a).
Hence, by suitable variation of the classical driving field
any single-photon pulse can be trapped ideally, if its pulse
length is longer than the bare-cavity decay time.

Generalizations to multiphoton states can proceed along
the same lines, but involve more tedious algebra. In
particular, for the two-photon states one finds D2�t� �
2a2d�t�2, and, in general,

Dk�t� � �2i�kakd�t�k (14)

can be proved. Under conditions of quantum impedance
matching Dk�t ! `� ! �2i�kak for arbitrary k. Hence,
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FIG. 2. (a) Storage of a hyperbolic secant pulse. Shown are
normalized input (dashed line) and output pulse (full line) as
a function of time as well as time dependence of cosu�t�, op-
timized for the input field. Time unit is decay time of bare
cavity g21. Dark-state decay rate is g0 � 1023g. (b) Fidelity
of storage for Fock state (dashed line) and squeezed vacuum
state (solid line) inputs as function of storage time ts. n denotes
mean number of photons.

pulsed fields in an arbitrary quantum state of a generalized
single mode can be mapped to the atomic ensemble.

Releasing the stored quantum state into a pulse of de-
sired shape can be accomplished in a straightforward way.
A simple reversal of the time dependence of the control
field at a later time td leads to a perfect mirror image of
the initial pulse. However, cosu can also be rotated back
to its original value in another way, which allows one to
“tailor” the pulse shape of the outgoing wave packet while
retaining the quantum state.

We next examine the factors limiting the performance of
the photon trapping scheme. Adiabatic following occurs if
the population in the excited and bright states is small at
all times. The corresponding conditions can be derived by
substituting the adiabatic solutions into the exact equations
and requiring that the coupling of dark states to all other
states is small [16]. For a pulse duration T , a linewidth of
the excited state ga, and a cavity width g, the adiabaticity
conditions are

V�t�2 1 g2N ¿ max

∑
gga,

ga

T
,

r
g

T
ga

∏
. (15)

Since the characteristic input-pulse length and thus the
characteristic times T have to be larger or equal to the
bare-cavity decay time g21, the first condition is the most
stringent one. Therefore adiabatic following is possible
provided that g2N ¿ gga.

In the discussion above, we have disregarded the finite
lifetime of the metastable state, g

21
0 . If g0 is small, its

influence during the loading and unloading periods can
be neglected but needs to be taken into account during
the storage interval. Collective states such as jcn� will
dephase at a rate gn � ng0, which sets the upper limit
on the longest storage time. To illustrate the effect of
this damping, we have plotted in Fig. 2b the fidelity of
the quantum state storage, defined as f � Tr �rinrout�, as
function of the storage time ts for input pulses in a number
state and a squeezed vacuum state. It is apparent that the
maximum storage time is on the order of the single-atom
decay time divided by the characteristic number of input
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photons. We note that in alkali-vapor cells with buffer gas
and/or wall coatings dark-state lifetimes on the order of
seconds are observed [9].

We conclude by summarizing the main results and out-
lining the possible avenues of future studies opened by this
work. We demonstrated that it is possible to map ideally
the quantum states of light fields onto metastable states
of atomic ensembles. This allows for the generation of
nonclassical (e.g., squeezed) states of atoms [see Eq. (4)].
These states are precisely of the form required to achieve
spectroscopic sensitivity beyond the usual quantum limit
[8]. We have further shown that by trapping entangled
fields it is possible to generate entangled atomic ensembles
[see Eq. (5)]. Quantum teleportation of collective atomic
states and quantum networking is, hence, feasible. Finally,
by trapping two fields within the same multistate species
[see Eq. (6)] one can create good conditions for coher-
ent manipulation of field correlations, entanglement, etc.
This opens up interesting prospectives for quantum logic
operations.

It is essential that all of the transfer operations can be
achieved without invoking the strong coupling regime of
single-atom cavity QED. We have shown that under con-
ditions of quantum impedance matching free fields can be
ideally transferred back and forth provided the excitation
rate of the collective mode (	g2N�ga) exceeds the cavity
decay rate [see Eq. (15)]. This can be used to considerably
improve the fidelity of quantum processing.

In proof-of-principle experiments squeezed or EPR-
correlated light generated by optical parametric oscillators
[17] can be used to drive dark resonances in Cs atoms.
However, eventually it should be possible to use the
nonclassical fields generated by EIT-based nonlinear pro-
cesses [18] in the medium that is itself used for trapping.

We note that several interesting questions remain open
and need to be explored. For example, we have not con-
sidered here any specific schemes to perform quantum
logic gates with trapped photons. Possible ways include
cavity QED techniques [11], direct nonlinear interactions
of photons via, e.g., resonantly enhanced Kerr nonlineari-
ties [18], or, alternatively, atom-atom interactions. We fur-
ther note that although the present analysis involves 7467.
electronic degrees of freedom, our method can be used to
excite states of the center-of-mass motion of cold atomic
samples in Bose-Einstein condensates [19]. Here again
collisions need to be taken into account. This adds new
interesting dimensions to the present studies and will dis-
cussed elsewhere.
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