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Theory of a slow-light catastrophe
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In diffraction catastrophes such as the rainbow, the wave nature of light resolves ray singularities and draws
delicate interference patterns. In quantum catastrophes such as the black hole, the quantum nature of light
resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. This paper
describes the theory behind a recent propfidalLeonhardt, NaturéLondon 415 406 (2002] to generate a
guantum catastrophe of slow light.
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[. INTRODUCTION into the black hole has swept along the vacuum. The vacuum
thus shares the fate of an inward-falling observer. Yet such
Catastrophe§l] are at the heart of many fascinating op- an observer would not notice anything unusual at the event
tical phenomena. The most prominent example of such &orizon. In mathematical terms, the vacuum modes are ana-
catastrophe is the rainbow. Light rays from the Sun entefytic across the horizofi8,9]. On the other hand, the modes
water droplets floating in the air. After two refractions and perceived by an outside observer are essentially nonanalytic,
one reflection inside each drop the rays reach an observdtecause they vanish beyond the horizon where the observer
Above a critical observation angle no rays arrive, wherea§ias no access. Consequently, the observer does not see the
below the angle two rays strike the observer. A bright bowglectromagnetic field in the vacuum state. Instead, the ob-
the rainbow, appears at the critical angle, because here ti§@rver notices the quanta of Hawking radiatjag] with the
cross section of light rays divergég]. (The critical angle Planck spectrume?™—1)~%. The quantum vacuum does
depends on the refractive index that varies with the frenot assume catastrophic waves of the tyPgr—rg)(r
quency of light in dispersive media such as water, giving rise~r's)'#, hence resolving so the associated wave singularity
to the rainbow color.The direction of a light ray is propor- and, simultaneously, generating quantum radiation with a
tional to the gradient of the phase. The rainbow thus reprecharacteristic spectrum. At the heart of such a catastrophe
sents a singularity of a gradient map, a catastrophe in thées a time-dependent process, for example, the gravitational
sense of Thomi3] and Arnol’d[4]. Structurally stable singu- collapse in the case of the black hdlg]. The process has
larities of gradient maps fall into distinct classes, dependinglisconnected the spatial regions where waves can propagate
on the number of control parameters involM&}4]. Struc- and has created a logarithmic phase singularity at the inter-
tural stability is the key to Nature’s way of focusing ligls] ~ face. Any time-dependent phenomenon will generate some
in the caustics created by ray catastrophes. Yet the wawv@diation for as long as the process lasts. In remarkable con-
nature of light smoothens the harsh singularities of rays. Sitrast, a quantum catastrophe creates quanta continuously.
multaneously, characteristic interference effects appear. For This paper describes the theory behind a recent fiith
example, the pairs of light rays below the rainbow create 40 generate a quantum catastrophe of slow I[gi2-17,21.
delicate pattern of supernumerary afdg that are visible An experiment is proposed based on electromagnetically in-
under favorable weather conditiofishen the floating drop- duced transparend§IT) [17]. In EIT a control beam deter-
lets are nearly uniform in siz&]). Every class of diffraction mines the optical properties of slow light in a suitable me-
catastrophes generates its distinct interference strugtlire  dium. Changing the intensity of the control light from a
Catastrophe optics describes the wave properties of rayniform to a parabolic profile creates a slow-light catastro-
singularities. In the hierarchy of physical concepts, wave opphe [11], see Fig. 1. This catastrophe resembles the event
tics refines and embraces ray optics, and quantum optid3orizon of a black hole, but shows some characteristic dif-
rules above wave optics. So, what would be the quanturferences also. In Sec. Il we put forward a rather general
effects of wave catastrophg8]? First, what are quantum Pphenomenological quantum field theory of slow light. Ap-
catastrophes? It might be a good idea to begin with an expendix A justifies the theory for the most common method to
ample, the black hol§7]. When a star collapses to a black slow down light using EIT17]. In Sec. Ill we address the
hole an event horizon is formed, cutting space into two disSpecific theory of the slow-light catastropftl]. Appendix
connected regions. Seen from an outside observer, tim@ contains some estimations that are relevant to the experi-
stands still at the horizon, freezing all motion. A light wave mental aspects involved. Section IV summarizes the results
would freeze as well, propagating with ever-shrinking wave-and draws a further vision of quantum catastrophes.
length. In mathematical termi], a monochromatic light
wave of frequencyw oscillates a9 (r —r ) (r —rg)'* when
the radiusr approaches the horizan, with u=2r.w/c. A
logarithmic phase singularity will develop. Potential quan- EIT [17] has served as a method to slow down light sig-
tum effects of such a wave singularity are effects of thenificantly [12] or, ultimately, to freeze light complete[\L3—
quantum vacuum. The gravitational collagsg of the star  16]. Like other successful techniques, EIT is based on a

Il. THE MODEL
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is transparent with a real susceptibility that depends linearly
on the detuning fromwy. In EIT our model is restricted to
the narrow transparency window aroung that can maxi-
I mally reach the natural linewidth of the atomic transition.
Appendix A shows that our model agrees with the three-level
theory of EIT. Our theory is simple enough to be treated
\ e / analytically and yet sufficiently complex to capture the es-
Y VY YVYYy sence of slow-light quanta. We postulate an effective La-
grangian#, show that# is consistent with the known dy-
namics of EIT within the validity range of our model,
= — calculate the energy, and quantize the field of slow-light po-
laritons. Our approach has the additional advantage that it
may be applicable to other mechanisfid] for creating

slow light, which do not rely on EIT.
FIG. 1. Schematic diagram of the proposed experiment. A beam

of control light with intensityl . generates electromagnetically in-
duced transparendyt5] in a medium, strongly modifying its optical
properties for a second field of slow light. When an initially uni-  We characterize slow light by a real scalar figldgnor-

form control intensity is turned into the parabolic profile shown ining the polarization. The optical fiel¢p shall be given in

the figure, the slow-light field suffers a quantum catastrophe. Founits of the vacuum noisg22]. For simplicity, we assume
slow-light waves, the interfac& of zero control intensity cuts uniformity in two spatial directionsg andy, and regard the
space into two disconnected regions and creates a logarithmic phasgtical field as a function of timeand positionz. Through-
singularity, in analogy to the effe¢?] of an event horizofi6]. The  out this paper we denote partial time derivatives by dots, by
quantum vacuum of slow light cannot assume such catastrophigifferential operatorsy;, or simply by subscripts, which-
waves. In turn, pairs of slow-light quanta, propagating in oppositéayer happens to be most convenient. Spatial derivatives are

directions away fronZ, are emitted with a characteristic spectrum. denoted by dashes, differential operateys or subscriptg.
The waves shown below the intensity profile refer to the emitteolWe postulate the ef:fective Lagrangian

light with the modesvg andw, of Eq. (50).

A

A. Lagrangian

h .
simple idea[17]: A control beam of laser light couples the =51+ a)p?— 2" 2~ awie?]. 1)
upper levels of an atom, and, in this way, the beam strongly
modifies the optical properties of the atom. In particular, theye see in the following section that the real parameter func-
coupling of the excited states affects the transition from thejon o determines the group velocity, and hence we eate

atomic ground state to one of the upper states, i.e., the abilityroup index. In EIT[17] the parameter is inversely pro-
of the atom to absorb probe photons with matching transitioportional to the control-field intensity,

frequency. Destructive quantum interference between the
paths of the transition process turns out to eliminate absorp- K
tion at exact resonandd.7]. A medium composed of such a(t,z)= I(t,2)"
optically manipulated atoms is transparent at a spectral line o
where it would otherwise be completely opaque. In the vi-with a coupling strengtt that is proportional to the modulus
cinity of the transparency frequenay, the medium is highly  squared of the atomic dipole-transition matrix element and to
dispersive, i.e., the refractive index changes within a narrowhe number of atoms per unit volume. Without the EIT me-
frequency interval. In turn, probe-light pulses with a carrierdium present,” is the Lagrangian of a free electromagnetic
frequencyw, travel with a very low group velocity, [18].  field, (¢0/2)(E?—c?B?) with fixed polarization. We see that
The intensityl, of the control beam determines the group ¢ is related to the electric-field strengEhin SI units by
velocity of the probe pulse, as long ksis stronger than the
. . 1/2

probe. Paradoxically, the lower thgis, the slower the pulse E— fi 3)
moves, which, however, is only possible when the electronic e ¢
states of the atoms follow dynamically the control fifl®],
causing the probe-light intensity to fall accordingi9]. In  wherew denotes the frequency of light arg is the electric
this regime light freezes wheln vanished13-16. permittivity of the vacuum.

The theory of EIT[17] often employs an atomic three- In order to motivate the Lagrangiai) we consider the
level scheme: Two levels account for the excited statesorresponding Euler-Lagrange equat|@3]
coupled by the control field and one level represents the

@

ground state, see Appendix A. In reality, atoms are more 5 5~Z’+(9 872 0¥ @
complicated and, when details matter, an accurate description L 8o 8¢’ So’

involves the full atomic sublevel structuf20]. Here we put

forward a phenomenological quantum theory of slow lightwhich leads to the wave equation

that is rather independent of the microscopic mechanisms - 5

used in practice. We assume only that the slow-light medium [9(1+a)di—Cc"d;+ awyle=0. )
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—ikztiot

o~—lwé,

traditional three-level model, see Appendix A, but the equa-

tion holds on more general grounds: Equati&h describes

light in media with linear spectral susceptibility. Assuming

that the optical field oscillates at much shorter time and h\12 Cikztiot 21 o

length scales than any variations @fwe replacd d; by the 8_0 we ¢"=(—k+2ika)¢, (12)
frequencyw and —id, by the wave numbek. We arrive at

the dispersion relation

This is the propagation equation of slow light based on the ( h )1/2
we

€0

and get from the wave equatidb)

®? (w+ wg)(w—wq)
o _

k2— —— =0, 6 :
c? c? © —2iw(1t+a)é
which, in the positive transparency window neay, agrees ~[(1+ a)w?+iwa—c?k?+2ikc?d,— awl]E
with
=[2iwcd,+iwa+ al(w’—w3)]E
2
w
k?*— —(1+x)=0 7 a
1+ @ =2iw(c£’+§€ 13
and the linear spectral susceptibil(ty8,24
20 when the carrier frequency is equal to the transparency
x=—(w—wqp). (8) resonancevy. We apply the relatioii2) between the control-
@o

field intensityl . and the group index, write | . as the square

At a later stage we need to consider negative frequencies &L the field strengti€.;, and obtain, finally,

well. To verify that the dispersion relatidl) is also valid in
the corresponding negative transparency window we utilize

) Y K
the general property of a spectral susceptibility Etcl'=—al~ §5= - g—cﬁtg—c- (14)
X(—o)=x*(w), 9
o This is exactly the propagation equation of slow light in the
which implies that near- w, adiabatic and perturbative linfiEq. (9) of Ref.[19] with the
5 Rabi frequency() being proportional tcf.]. Consequently,
X=— _a(w_,_ wo). (10) the.Lagr-angiarlljl) has codified naturally the correct dynamic
o regime including thea&/2 term that describes reversible

. ._stimulated Raman scatterif9].
We see that as long as the frequency of the probe light lies ™\ o yer 1o understand the principal behavior of ordinary

within the transparency windows of EIT, the Lagrang(ah slow-light pulses, consider the case of a spatially uniform yet

reproduces the typical linear slope of the spectral susceptl ; - .
bility. In fact, up to a trivial prefactor is the only Lagrang- time dependent group index. Equatia) has the solution

ian that is quadratic in the field and its derivatives and that is

consistent with the spectral susceptibilitié®) and (10). _ _J'
Therefore we regardZ as a suitable Lagrangian for slow Et,2)=£&| 2= | vydt]\vgle (15
light.
. in terms of the velocity24]
B. Dynamics
The ability to freeze light by turning off the control field c

depends crucially on the dynamics of the process. Consider a
time-dependent group inde® without significant spatial
variations. In this case slow light is dominated by oscilla-
tions within an optical wavelength and an optical cycle. WeWe see that the pulse envelogeropagates with the speed
express the wave as v, called group velocity. When the group velocity changes in
" time, the intensity|£|? reacts proportionally. The ratio be-
(s_o + Kk)1|&|?, remains large, even in the limit of a vanishing
control field wherv 4 vanishes as well, as long asis large

tween the control(2) and the pulse intensity15), (I
with the SlOWIy Varying electric-field amp“tu@”'] Sl units. (for a Sufﬁcient'y dense mediu):n'rhe Spectra' Spread of a

Ug:m. (16)

1/2
. . w
we=Eek 1oty c e, k:E, (12)

We approximate pulse is reduced by, /c and a standing pulse oscillates just
5\ 12 with the carrier frequency. In this regime slow light does not
(_ we ketioty o (— 221 w3,)E, leave the transparency window of E[T4]. One can freeze
€o light without losing contro[13,14].

043818-3



ULF LEONHARDT PHYSICAL REVIEW A 65 043818

C. Energy In order to guarantee that satisfies the wave equatidb)

After having gained confidence in our field-theoretical ap-th® mode functionsi, are required to obey EdS) as well.
proach, we use the Lagrangidf) to calculate the energy |heUq shall be normalized according to
balance of slow light. According to Noether’s theor¢g3|
we obtain the energy density (Ug,Ug)=6(d—q’), (uq ,u;‘,)=0, (23

S % with the Klein-Gordon-type scalar produ@3,25

=5 o= 7=5[(1+a)e?+c?e 2+ awie?] (17)

+ oo

(ere0=i [ lelbrtioal1+adz (24

and the energy fluxPoynting vector

The scalar product is chosen such that it remains constant

p=—1ic2pp’. (18) during the propagation ap; and ¢,

o 37
ey

+ o
The energy balanch+ P, is then, as a consequence of the  §,(¢,,¢,)= if [eF d(1+a)pr— @20:(1+ )@} ]dz
wave equation(5), o

ha
|+ PZ=7((,02+w(2)<p2). (19

+ 00
=i02J I @1 ¢~ @27 ')dz=0. (25

Using these postulates and definitions we calculate the com-
Temporal changes in the control field, modifying the groupmutation relation of the mode operators
index (2), do not conserve energy. In fact, the experiment of
[13] indicates that the control beam can amplify light stored 5 at 7= _ “Vu* o * ~
in an EIT medium with zero group velocity. In the experi- [8q:8q:]= = (Uq, &) (Ug . &)+ (Ug,2) (g )
ment of [13], slow light enters the EIT sample and is then e,
frozen inside by turning off the control field. Switching on _j (ug ¢t~ dUg)(1+a)dz
the control releases the stored light. The pulse emerges with
an intensity that depends on the control field and that may +oo .
exceed the initial intensity, in agreement with E@5). Xﬁx(”q"Pt_‘Puq’)(lJ“a)dzl
Clearly, this phenomenon is only possible if energy is indeed

transferred from the control beam to the probe light. +oo . )
- j, (Ug 1= @Ug ) (1+ a)dz

D. Polaritons

+ o
Finally, we realize the full potential of the Lagrangiél) xf (u; o1 ¢U§)(1+ a)dz
in setting up an effective quantum theory of slow light. The -
classical canonical momentum density of the fietdis

1 e[t - ~ AN ’

(23,29 = gﬁx fﬁm {ug U [@(2), 7(D[1+ a(z')]

%:ﬁ(lmm. 20 — X ug[&(2),7(2)][1+ a(2)]}dzdZ

de

+ o
=i *( r— u* ’ 1+ d

We quantize the field by regardingand 5 4/ 5¢ as Hermit- I f—w (UqUgr — Ug Ug')(1+ @)dz
ian operatorsp and 7, respectively, with the canonical com- ,
mutation relation$23,25 =0(q—q’). (26)

In a similar way we prove that
[&(t,2),@(t,2")]=[7(t,2),m(t,2')]=0,

[84.84/]=0. 27)

Consequently, and in agreement with the spin-statistics theo-
rem [23], slow light consists of bosons. Let us express the
total energy(18) in terms of the annihilation and creation
operatorsa, andég. Consider the case of a stationary group
index @ when the total energy is conserved. We obtain after
partial integration, via the wave equatidB) for the field
operators,

[6(t,2),7(t,2)]=ih8(z—2'). (21)

Let us decompose the field into modes with dimensionless
mode indicegy

o(t,2)= f [aquq(t,2)+alu (t,2)]dg. (22
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o ho[+o Near a zero in the intensity, the control-field strength must
f T%z= Ef [(1+ @) (0:$)*—c?pd2p+ awhd?]dz  grow linearly. Consequently,, depends quadratically on
o ” and, according to the relatid®), the group indexx forms a
quadratic singularity where the group velociiy6) vanishes,

—

B[+
5| leer-egeiarane e

(30

i
NI\.)I QJN

ata L
aqaq+§

We employ the mode expansi¢22) with the norm(23) with
respect to the scalar produ@4), use the commutation rela- ) )
tion (26), and find, finally, The parametea sets th_e scale_ of the group-lndex_ profile. We
assume that the spatial profi{80) of the group index ex-
tends over a sufficiently long range. For simplicity, we con-
f“}oodz:f ho dq (29) sider a one-dimensional model where the slow light propa-
— gates in thez direction only. Appendix B generalizes our
results to a realistic three-dimensional situation. Apart from
Consequently, the annihilation and creation operadgrand  these idealizations and from the physics captured in our La-
ég refer indeed to the energy quanta of slow light. The quagrangian(1), we make no further approximations.
siparticles of light in a dielectric medium are called polari-
tons in analogy to the optical excitations in a sgR®]. They A. Horizon
combine characteristic features of free photons with the At a node of the control field the group velocity of the
propertie; of the dipqle os_;cillations of the atoms constitqtin robe light vanishes. Therefore we would expect that no
the ”?Ed'“”?- When light is slowed dow_n photons turn Intowave packet of slow light can pass the interfe&eConsider
aLOT'C excnf'?ﬁtllosni 4]th_|"‘_‘:]’ aft(Tr f':ccele_:r:mon, mtay er_ner?e low light subject to the wave equati¢s) with the group-
photons agaifi13,14]. The polariton picture contains implic- . '
itly the correct bookkeeping of the photonic and atomic fea—mdex profile(30). We represent a wave(t,z) as
tures of light in linear media.
One can use similar arguments as in the section on the = \/2‘75 (31)
dynamics of slow light to prove that the proposed polariton d find
theory is consistent with the adiabatic three-level m¢de]. and fin
Yet our approach is not restricted to a regime dominated by
spatial oscillations of the form expz/c), see Eq.(11), [2207 + (07 + w§) — ¢%(2,20,~ 3)16=0.  (32)
which is in essence the regime of geometrical opfZ3]. ) ) )
One can easily relax this unnecessary constraint of the thredVe could multiply ¢ by step function®(+2z) and still get
level theory, because the electromagnetic response of &plutions of the wave equatid32), because
atom is local, as long as the wavelength of light is large
compared with the size of the atom. The adiabatic polariton 29,0(x2)p(2)=0(*2)29,¢(2) = $p(2)25(2)
theory[19] is, as ours, restricted to a narrow frequency range
with respect to time, i.e., to the transparency window of the =0(+2)29,4(2). (33
electromagnetically manipulated medium. Yet this reStriCtionConsequentIy waves on different sides®ére independent
in frequency does not exclude rapiq spatial oscillations bebf each other.’ As long as slow light is concerned, the inter-
y(_)nd th? scale of the wave_length n Vacuu”_”d_“" We  face Z has cut space into two disconnected parts.
will see in the following section that such oscillations occur  ~,usider monochromatic probe light oscillating with fre-
near a spatial singularity of the group index. In this situationquencyw_ In this case the wave equatidB2) reduces to
our quantum field theory of slow-light polaritons turns into aBessel’s differential equatiof29] with the index
perfect tool for analyzing the quantum physics of a wave
catastrophe. 1
v= \/Z —a?(k?~kj). (39
Ill. THE CATASTROPHE

Imagine that the control beam illuminates the EIT me-Herek abbreviatesv/c andk, refers towy/c. So, in math-
dium from above. Initially, the control intensity is uniform, ematical terms, the monochromatic waves of slow light are
but then the control light develops a dark node that continueBroducts of a square root with Bessel functi¢@s],
as an interfaceZ of zero intensityl . through a part of the
medium. One could use computer-generated holograms to o=1\zJ. (kz)e ', (35)
achieve this situation, similar to the generation of Laguerre-

Gaussian beamf28]. Suppose that the interface is suffi- Depending on the detuning of the frequenaywith respect
ciently flat and cuts deep enough into the medium to justifyto the exact transparency resonamgg two cases emerge.
our model.(We have assumed uniformity in the two spatial First, when /az(kz—ké) is below unity the Bessel indexis
directionsx andy that are parallel to the interface. Most real. We apply the asymptotics of the Bessel functions for
probably, uniformity over a few wavelengths would suffice. large and positive argumengs[29],
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5717 the optical analog of a horizon.

%' o W) analogy we regard the interface of zero group velogitgs
expgip—iv

1
T

v
+ex;< —ip-‘riVE—Fi Z
Consider a superposition of sufficiently blue-detuned
We see that in the far field the light waves with real Bessef!OW-light waves(35) with imaginary Bessel indice87). To
indices are in a perfectly balanced superposition of incidengn@lyze the quantum effects of the horizon on polaritons, we
and emerging plane waves. In other words, the light is totallyUSt turn the waves into modé2), i.e., we must normalize

reflected away from the interface of zero group velocity, "€ Wave functions according to the scalar prod(@4).
similar to the reflection of radio waves at the Earth's jono-"Vaves(39) with different wave numberk are orthogonal to
sphere[30]. each other and possess a continuous spectrum. Hence they

A more interesting scenario appears in the second Ca%muld be normalized t@ functions. We employ the ratio

when the light is sufficiently blue detuned to evoke an imagi-k/k0 as the dimensionless mode ?ndqxhat oceurs in the
nary Bessel index scalar product24). The normalization factor is entirely de-

termined by the way in which the norrf24) diverges to
i 37 reach thes singularity[32]. Consequently32], we can ig-
V= nore all finite, converging contributions to the normalization

This regime can be reached by adjusting the gradient of thitegral given by Eqsi24), (30), and(39),
control field that plays a decisive role in Ed8) and (30).

The smaller the gradient is the larger ad. Therefore, a
sufficiently small control-field gradient gives rise to an
imaginary Bessel index, even within the narrow transpar-
ency window in frequencw =kc. On the other hand, as we
will see at a later stage, the gradient should be as large as
possible for producing a maximal quantum effect. When the
Bessel indexv is imaginary the incident and the reflected
waves are not balanced anymore, as we see from the asymphe integral(41) diverges both az=0 and atz=cc. We
totics (36) of the Bessel functions. Only a fraction of the account for the two divergences separately in the intedgals
incident wave is reflected and the rest must be transmitte@ndl..,

somewhere. To find the transmitted wave, we focus on the

behavior of the Bessel functions for small arguments. We use

_ (36) B. Modes

(e1,¢02)= (w1t wp) Jo I, (Ki2)d iy, (Ko2)Z

a2

X| 14+ =
Z2

dz (41

the first term in the power seri¢29] (e1,02)=2w(lg+1.,). (42
1 [g\*

Ji (D)~ '_I(E . (=kz, (—0. (38)  Ignoring any convergent contributions kg, we cut off the

(Tp)! integral at some smafly, regardz(1+a?/z%) asa?/z, and

Therefore, near the interface of zero group velocity the Iightuse the asymptotick38) near the origin,

waves are proportional to

4 2 2
(2= [ explinIn §) =l expliS). (39 |0:f0 I (klz)sz(kzz)%dz

*ipg
The logarithmic phas8reduces dramatically the wavelength 5
nearz=0, because __a féo itagnp 3¢
[(i)!? Jo
27 2w 2
=——=—2 (40 . a® (I .
S :Slnh(mL)M—W _ex Ei(ue— pa)€]dE
The transmitted wave thus freezes in front of the interface of 22
zero group velocity. . =sinh(mu) — 8(pp— ) =KL sinh( ) 8(ky ko).
We regard a process that creates an interface where waves M
separate and develop a logarithmic phase singularity as a (43)

wave catastropheThe gravitational collapse of a star into a

black hole has created an horizon that cuts space into two

disconnected parts as wéll]. Close to the event horizon, an In the last step we have utilized the fact thatdu/ok)
outside observer would see a similar behavior of wg8s equalsa®k. Furthermore, we have used Eq. 162.of Ref.
All motion freezes near the horizon of the hole, which, there{33] for the gamma functiox! =I'(x+1). Let us address
fore, has also been termed a frozen §81. In view of this  the other integral,
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o 1 (= i T . omT.m
|°°:fsziiﬂl(klz)‘J*‘#z(kZZ)ZdFz_wkam exr{—lklzt,uliﬂ 7 +exr{+|klz+,u1?—| ZH

X dz

. m T X . m T
exp{ +Ik22i,u2?—l 7 +exp<—|kzz+,u2?+| 7

dz=k !costmu)d(k;—k,). (44)

eXF<i(k2_k1)Zi(,U~1+ Mz)g "'eXF{i(kl_kz)Z:(Ml‘F H2) g)

Combining the two integral&3) and(44) gives in totallsee  The asymptotic$51) show that thev modes turn into plane
Eqg. (42)] waves propagating away from the horizon. In other words,
thew modes are those that reach an external photon detector.

(¢1,02)=2ce™ (K1 —Kj). (45
. . . . . C. Analyticity
Consequently, in the spatial region right from the horizon ) . )
(z>0) the normalized wave functions are The stationary mode&0) of catastrophic slow light are
severely nonanalytic. The modes vanish on either the left or
0(2) _ the right side of the horizon with a characteristic essential
Ug=—=¢" 7”"zx/koz\lim(kz)e"““. (46) singularity as a precursor. Waves near the event horizon of a
V2c black hole suffer a similar fat€8]. Seen from an outside

observer, the waves freeze near the Schwarzschild ragius
with an essential singularity of the type-{r¢)'#, whereu

. - =2r.w/c [8]. Yet an observer falling into the hole would see
Uz (2)=ur(=2). (47) little difference in waves near the horizon and could pass the
point of no return without noticing. Like the inward-falling

Left from the horizon £<0) we chose for convenience,

The step func_uor@ n the def|n|t|on(4§) guarantees that the observer, the quantum vacuum flows towards the central sin-
u modes on different sides of the horizon do not overlap and

therefore. th ) tomaticallv orthoqonal t h oth Igularity of the hole and, similarly, the horizon should not be
eretore, they are automatically orthogonal to each o eaf’]special place for the vacuum either. In mathematical terms,

However, thex degenerated waves on _th_e same side aré NGhe wave function of the vacuum is analyfig,9]. Conse-
orthog(_)nal_. In fact, we obtain along similar lines as in thequently, the modes seen by the outside observer must not be
normalization procedure, in their vacuum states. In fact, they carry the quanta of
Hawking radiation[10]. The history of the hole formation
during a gravitational collapse turns out to be responsible for
the analyticity of the vacuurf8,9]. Inspired by the analogy
between a black hole and our slow-light catastrophe, let us
consider the history of our horizon.
Suppose that the group index was initially a largely
1 (UZ—e"™uZ) uniform «q. Then, by tuning the control field, the group
Ji—e 27 R R% index develops a quadratic singularity, for example, as
a=a%(t)/[Z2+Db?(t)] with a’(—x)—ow, b2(—x)—x,
W (2)=wWg(—2). (49) a?(—)/b?(—»)—ay, and finally b?(+«)—0. The de-
tails of the process do not matter. Immediately after a timne
We chose as the orthonormal basis in the mode expansidh€ group index will possess the quadratic singularity that we
(22 are studying, creating a slow-light catastrophe. Given a uni-
form group index as the initial condition and with no slow-
WR=Wg, Ug=Ug, W =w,, u=u. (50 light injected, the polariton vacuum occupies initially pack-
ets of plane waves that we can sort into right- or left-
Finally, to find an interpretation of the modes, we use the traveling waves,
asymptotics(36) of the Bessel functions and get fla| —

(Ug ,Ug) =€ "“8(q1—0y). (48)

Yet we construct easily the orthogonal partnersto theu™
waves,

*_
WR =

. . . Z
on the appropriate sides of the horizon, ‘Di:f A+(w)exp{ +i S \/w2+ao(w2—wg)—iwt do.
(1—6_2’”‘) 2 F( Lo ) ) 77) (52
Wr~| ——] exp +i—z—iwt—i—]|,
4mcwl wg ¢ 4 Regarded as a function of complex the ¢. waves are

1o analytic in the uppef+) or lower (=) half plane, respec-
exp( w 77) (51) tively, because here the integrd2) converges. When the

1—e 27#
L~ —i—z—iwt—i—]. - X
C control field creates a horizon the vacuum modes must fol-

Admcwl wg

4
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low the wave equationt5). We assume thai is analytic  the right are analytic irz on the upper half plane and they
apart from poles. Consider closed contour integrals in eithemust have originated from a wave incident from the left. The
one of the half planes. We obtain from the wave equatn analytic properties of the vacuum waves in space are thus
connected with their analytic properties in time. Analyticity
in the upper half of the plane is linked to analyticity i on
o, 35 (1+ a) g dz=c? § 0, 07— w? é apdz. (53  the left side and, using similar arguments; analyticity in the
lower half of thez plane goes hand in hand with analyticity
in t on the right side. We utilize the analytic properties of the
Due to the analyticity of the initial wave packe2) $¢dz  yacuum waves in space and time as a marker for distinguish-
and ¢ ¢,dz were initially zero. Equatiort53) indicates that  ing the vacuum modes.
both integrals remain zero, as longass analytic. At single
poles of @ we geto,= —w(z)qo, which cannot generate a sin-
gularity. Higher poles ofx do not contribute to the closed
contour integrals. Consequently, the vacuum wave functions The vacuum states of slow-light polaritons are character-
are always analytic iz ized by analytic wave functions imn Therefore, to describe
Consider the analytic properties of the vacuum wavedhe vacuum after the formation of the horizon, we should
with respect to time. Picture a wave with positive frequen-construct orthonormal combinationsof the nonanalyticu
cies incident from the left, see Fig. 2. After the catastrophe &nd w modes that are analytic on either the upper or the
part of the wave may freeze at the horizon and the rest iower half of the complex plane at some arbitrary tintg.
reflected. If the wave happens to arrive during the formationhe solution is
of the horizon, a brief burst of light with negative frequen-
cies may be generated. However, in the stationary regime we 1 _ it .
are interested in, the reflected light contains always positive URZESGCNWM)WL_'WR_'G 0 EseCmWM)WR,
frequencies. Therefore we regard the wave functigh,z)
on the left side of the horizon as analytic tiron the lower

D. Combinations

complex plane. Given an analytic signg{t) at somez we vh= 1 (Up+ie™u,),
can propagate it in space according to the wave equé&ion V1+e?™

without loss in analyticity, but we cannot pass the horizon,

because here is singular. It is, therefore, conceivable that 1 1

beyond the horizonp(t) is not analytic anymore. In other vL=§SeCN7TM)WR—iWL—ie_z'“’to 5 Sechimu)wi
words, ¢(t) may contain negative frequencies. In fact, we

show in the following section that negative frequencies in

time are unavoidable for not running into conflict with the pl= 1 (U, +ie™ug) (54)
analyticity in the spatial coordinate Waves propagating to L J1+e? - L R

Because the andw modes are orthonormal with respect to
the scalar product24), one can easily verify that the
modes form an orthonormal set as well.

The modedq54) are given on the rea axis and are sub-
ject to analytic continuation. We prove that thg and vy
modes are analytic on the upper half plane and thawthe
andv modes are analytic on the lower half plane. First, we
use the definition$49) and(50), and writevg andv in the

W i form

™

-2

FIG. 2. Space-time diagram of a slow-light catastrophe. The 2 costimu)V1-e "og
figure illustrates the fate of a wave packe(t,z) that experiences =u, —ie" ™ (1+e 2™)ut —e 2THug*e 2ol
the formation of the horizoi£. Initially, the packet oscillates with
positive frequencies in time and propagates from the left to the —e” 7T“[u,f—ie"”‘{(1+eJ’Zq”’“)u,;
right in spacez. The horizon cannot generate negative frequencies )
in the reflected light, apart from a brief burst that we neglect. On the —et2muyire ot ],
left side of Z we thus regardp(t,z) as analytic int on the lower
half of the complex plane. Furthermora/,?(t,z) is analytic inz on 2 coshimu) mUL
the upper half plane throughout the history of the wave packet,
because the proce§s) conserves analyticity. Yab(t,z) is not ana- =ug—ie" ™ (1+e 2™ —e 2mHy *e 2ol
Iytic in t on the other side of the horizon, as the solutid)
indicates. Here waves with negative frequencies are continuously —e "Hug—ie” ™ (1+e ™)
peeling away from the horizon, corresponding to a stationary cre- R
ation of slow-light quanta. —e 2y *em el ]. (55
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Then we show that the combinations not happen. Similar arguments apply to all other Bogoliubov
— _iatmag e ot transformations. Consequently, our modes are uniquely de-
ug—ie"™ug, u —ie"™ug”e °, fined up to superpositions, but such transformations do not
P e e oiwt change the vacuum staf84]. Therefore, they modes are
u —ie”"ug, u—ie"™ug*e " (56)  indeed the vacuum modes.

are analytic on the upper half plane and that the correspond- o

ing combinations E. Radiation

. As a consequence of a slow-light catastrophe, the polar-

+_i - +_i +x o= 2ot . e . .

ug—ie"Thu,  ug—ieTThuFe e, iton field is decomposed into two different sets of modes.
The v modes contain the polariton vacuum, whereasuhe

— . — + — . — — % 72 t 3
Ug—ie”™u , ug—ie ™u Te 9 (57)  gndw modes guide the detectable quanta,

are analytic on the lower half plane. The analyticity of the

modes(54) follows from the analytic properties of the com- @ZJ (@rWr+ ag Ur+a W +a,, u +H.c)dg,
binations(56) and (57). Here it is sufficient to focus on the

vicinity of the origin where the left and right modes are

connected. As a consequence of H§8), (46), and(47), we = J (brog+brivg+bv +b vi+H.c)dg. (60)
get in terms off=kz,

0(2) 2Fiu _ _ The & operators are the annihilation operators of the detector
Ug~————= € K2 — g loty=intl2 modes and thé operators refer to the vacuum modes. H.c.
V2cw/wg (i) denotes the Hermitian conjugate ag@re the mode indices
. _ k/ky. Notice that the vacuum modes contain both positive-
ug (§)=ug(=9. (58 and negative-frequency components, because th@&4ein-

, i . 1 ) volves complex conjugate&v modes. Therefore we expect
Consider the analytic properties ¢f“* = for an arbnrrillrzy that the corresponding operator transformations combine an-
real u. We indicate with a subscript- whether ' nihilation with creation operators. This is the decisive sign
should be regarded as analytic on the upperor the lower ot pair creation, similar to the production of photon pairs
(—) half plane. With this notation we get in parametric down-conversiof22]. We representir as
FEV2_ O (g) fin V2 O (= ) P12 (Wgr,®), agr, as (UR.,(:D), et cetera, use the normaliz.ation
= = (23) and the properties of the scalar prod(@4), and arrive

=0 ()21 (=) (—1)rT2 at the Bogoliubov transformationg5]
X (— ip+1/2 1 A . - 1 i
( g_) éR=§secm7T,u)b,_—ibR+ie2'“"0 Esecmm)bg,
=0 121 (-exd xim(ip+1/2)]
X(_g)i,u+1/2 1
i = | &g, =—=—==(bg, +ie™b 61
:®(§)§|p’+l/2iie+w’u'(—g)(—§)|#+l/2. (59) RL 1te ﬂ'ﬂ( RL LJ_) ( )
This relation proves the analyticity of the combinatidB§)  angd at analogous relations fé and4,, . Without initial
and(57) and, as a result, the analyticity of the mod8s). probe light injected, the dynamically formed slow-light ca-

However, is the set of modeg&4) unique? In principle,  tastrophe will cause spontaneous radiation of probe polari-
we could perform linear canonical transformations that conygns at a constant rate. because we obtain farode vacua
vert the modeg54) into a new set, yet such transformations

are sgverely restricted by the required analyticity in space <3E(Q1)3R(Qz)>=(éE(Q1)3L(Q2)>=W5(Q1—Qz) (62)

and time. For example, we can construct superpositions of

the vg and vg modes to form the new modeszCosé  \ith the average particle number

+€”uRsing and vy cosé—e Yvgsing, analogous to the

mode transformation of a beam splittg84]. Or we may . 1

combine vg with v in the Bogoliubov transformation = (e te "2 (63)

vgr coshé+€7 v} sinhé and vy coshé+€7 v} sinhé, analo-

gous to a parametric amplifigB5]. However, only transfor- - The radiation energy will be taken from the control beam.
mations of this type maintain the analyticity on one of theThe initial formation of the horizon is a time-dependent pro-
half planes of complex. We are not allowed to combing:  cess that, therefore, transfers energy to the polariton field.
with vg* or vk with v, . Yet the possible mode transforma- vYet, in addition to an initial brief burst of energy, the control
tions are further restricted: a Bogoliubov transformationbeam creates a wave catastrophe that would force polaritons
vrcoshé+e?v] sinhé would generate negative frequenciesinto a state they cannot occupy. The frustrated polariton field
on the left side of the horizon. We have argued that this musteacts in attempting to alter the parabolic profile of the con-
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trol intensity. This process takes energy away from the conguencies different fronwg are absorbed near a node of the
trol beam and allows the creation of polariton pairs. Paircontrol field, unless the medium becomes nonlinear. We
production continues as long as the control beam is not sigshow in Appendix A that the nonlinearity of the EIT medium
nificantly depleted. A running wave of control light will pro- depends on the ratio of the probe and control intensities.
duce a steady flow of slow-light quanta. According to the linear optics of slow light discussed in this
The slow-light catastrophe generates a maximal particleyaper, the probe intensity is proportional to the distance

number per mode, E¢63), of 1/4, which is quite substantial, from the horizon, as long de is small, whereas the control
considering the fact that _bright sunlight with a radiation tem'intensity grows quadratically. Consequently, at a certain dis-
perature of 6<10° K carries a mere 0.01 photons per mode ancez, both fields are comparable in strength. Here slow
in the optical range of the Planck spectrum. However, thQight leaves the regime of linear response. In a semiclassical
photon numbe(63) |s.sharply p_eaked as afuncyon,ofa_nd, concept of ligh{ 39,40 quantum fluctuations are small per-
IN any case, our palr-prloductlon mechanism IS rgstrlcted Yurbations of the classical amplitude and are subject to a
the narrow frequency window of EIf17]. To maximize the linear theory. If the vacuum state of light is classically un-

generatepl guantum radiation, one should create a situatio able, photons are created spontaneously. For example, in
where u Is near zero over an as large as possible Sp?‘:trajlarametric down-conversiof22] quantum fluctuations are
range. In terms.of the experimental parameters, we get in th5mplified[39], generating photon pairs. The instability of the
transparency window neaso, linear optics near a slow-light horizon may provide the mi-
1/ 8 12 o—o croscopic mechanism for the pair production we have pre-
0 . . .
n= §<5— —1) , = dicted phenomlenologlcally.. However, .the nonlinear effects
0 of the EIT medium are required to dominate at a stage where
2 the absorption is still small. We show in Appendix B that the
(64) probe intensity is proportional to the detunidg given by
Eq. (64) in terms of the characteristic scd&0) of the group-
index profile(2). Therefore, the ratio of the control and probe
Pair production occurs on the blue side of the critical detunintensities does not depend anand, consequently, the non-
ing &y (for 6> &) whered, also determines the width of the Jinearity distancez, is independent of the control-field gra-
spectrum(63). The smaller the scala of the group-index dient. In order to avoid absorption the control should be
profile (30) is, the larger is the critical detunin@64) and  strong enough at,, which requires a steep field gradient.
wider is the spectruni63) of particle production. Equations Using the experimental parameters of RE18,15, the Rabi
(2) and (16) indicate that the scale is small for a steep frequency[22] of the control field should grow at least by 10
group-velocity profile created by a large control-field gradi- MHz per wavelength, away from the horizon, as we show
ent. Gravitational black holes show a similar behay].  jn Appendix B. In this case the scage= (5% 10°)\, and the
The smaller the hole iS, the Iarger is the graVity gradient abritica| detuning 502 10_10_ Appendix B indicates that a
the horizon and stronger is the Hawking radiatjd0] gen-  |arge numberof the order of 18) of photons are generated

erated. _Returning to our case, the parameter dep(_andence Fggr second, amounting to a gentle glow perhaps visible with
the particle-number spectru(@3) underlines the crucial role  the naked eye.

of a spatially varying group velocity in creating a quantum

catastrophe. A mere zero of the group velocity would not
suffice to produce a measurable radiation. The control-field
gradient matters.

Close to the horizon the susceptibility of slow light di-  Tuning the control field towards a parabolic intensity pro-
verges. Yet Nature tends to prevent infinite susceptibilitiesfile causes a catastrophic situation for slow-light polaritons.
Instead of responding infinitely strongly, optical media be-In turn, the polariton field sets out to deplete the control
come absorptive or nonlinear. Considering gravitationabeam, in an attempt to alter the intensity profile that has
black holes, Nature could prevent the existence of true everdaused the wave catastrophe in the first place, yet in vain.
horizons as well. Here waves are supposed to shrink iThe control beam continuously replenishes the parabolic in-
wavelengths beyond the Planck scale where the physics tensity profile, driving a stationary production of polariton
unknown. Hawking radiation seems to stem from these expairs. The two polaritons of each pair are created on opposite
tremely shortened waves. This trans-Planckian proljlé®h  sides near the horizon, they depart slowly, accelerate gradu-
was analyzed in theoretical toy models of sonic black holeslly, and emerge as detectable photons. The Hawking radia-
in moving fluids[37,38. Here the interatomic distance pro- tion of a black holg10] follows a similar scenari¢8]. Here
vides a natural cutoff for extremely shortened sound waveshe gravitational collapsg7] has triggered a quantum catas-
Nevertheles$38], the mere threat of a horizon seems to betrophe at the event horizon, causing pair creation to last as
sufficient for generating Hawking sound. long as the hole possesses gravitational engdgi0]. One

Returning to slow light, an EIT medium in linear responseparticle of each pair falls into the black hole, whereas the
is transparent within a narrow spectral window around theother escapes into space and appears as thermal radiation
resonance frequenay,. The spectral width of the transpar- [10]. In our case, and in contrast to gravitational holes, one
ency window is proportional to the intensity of the control can explore the other side beyond the horizon and, for ex-
beam[17]. Therefore, slow-light waves oscillating at fre- ample, measure the correlations of the generated photon

o
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pairs. Both cases are triggered by catastrophic events withhum or in the near infrared (¥dHz), whereas the fre-
lasting consequences. quencyw,, is much lower (18 Hz). The atom is subject to
The quantum radiation of a slow-light catastrophe re-fast relaxation mechanisms €lBiz) that transport atomic
sembles Hawking radiation, but exhibits some interestingaxcitations from the3) state down td1) and from|3) to |2),
differences also. The emitted spectr®3) is not Planckian, mainly caused by spontaneous emission. Hardly any excita-
whereas a black hole of Schwarzschild radiyappears as a - tions move from2) to |1), because the spontaneous emission
black-body radiator with temperaturec/(4mrs) [10]. The  rate is proportional to the cube of the frequerid$]. Here
differences between the two spectra can be traced back the relaxation may be dominated by other processes, for in-
two different classes of wave catastrophes. In both casestance, by spin-exchanging collisions. Without relaxation the

waves freeze at a horizon in the fordH with an exponent dynamics of the atom is governed by the Hamiltonian
iu+1/2 for slow-light media but with an exponeni for

black holes wherg.= 27r sw/c [8]. Note that Unruh’s effect B 0 0 1 ]
[9] of radiation seen by an accelerated observer is of the n §K13Ep
Hawking class as well8] and so are most of the proposed 1

artificial -~ black holes [24,37,38,41-4B Remarkably, 0= 0 hwyy — Sl
Schwinger’s pair production of charged particles in electro- 2

static fields[44] is accompanied by a subtle wave catastro- 1 1

phe of exponentu—1/2 [8] and leads to a Boltzmannian - EKBEE)“ - §K23E(C+) fiwis

spectrumn =exp(—2mu). All three catastrophes agree in the

limit of large u but deviate significantly in the regime of

maximal particle production wherg is small. It might be  The Hamiltonian represents the atomic level structure and

interesting to find out whether more than three types of quandescribes the dipole interaction with light, considering here
tum catastrophes can occur. only the positive-/negative-frequency componeffs’ and
E(Y) that match approximately the level structure. Tg
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ter equatior(46]

Ar=1)(3|, Ay=|2)(3], (A2)

APPENDIX A: DARK-STATE DYNAMICS dp i N PR A A npn
—-=7[p.A1=2 n(AJAp—2AA+pAA).

In this appendix we consider the microscopic theory of dt 4 '
the atoms constituting an EIT medium. We derive the wave (A3)
equation(5) as the linear-response limit of the nonlinear dy-
namics of slow light. Assume that the EIT medium consist
of n, identical atoms per unit volume, each one equippe
with three levels interacting almost resonantly with the probe P «
and control fields, respectively, see Fig. 3. Qe o= "PE) Qe ioot= _13E§)+) (Ad)

We treat light as a classical electromagnetic field. An h h
atom is characterized by the energy-level differentes,
andf wo3 With w1+ w,3= w13=wg. Typically, the transition
frequenciesw3 and w,3 are in the optical range of the spec-

It is advantageous to represent the light fields in terms of
abi frequencies

defined here with respect to the atomic transition frequencies
w.= wyzandwy= wq3. In the absence of relaxation, an atom
would oscillate between the ground and the excited state
with frequency() (Rabi flopping[22]). On the other hand,

’ Control relaxation leads to a stationary state where the atomic dipoles
Probe NN follow the fields.
ANNNB- Assume that the control beam is in exact resonange
and that the probe light is monochromatic with a small de-
, tuning w — wq. Furthermore, the Rabi frequency of the con-
] trol beam shall dominate all relevant time scales,
FIG. 3. Three-level atom in a regime of electomagnetically in- 1Qc[>Qp|,y1, 72, |0— 0| (A5)

duced transparency. The control beam couples the levels 2 and 3,
which influences strongly the optical properties of the atom for aln this limit the stationary state of the atomic evoluti@3)
weaker probe beam tuned to the transitior 3. turns out to approach the pure state
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p=|wo) (ol In a stationary regime under the conditiA5) the vector
agrees with the dark stat&6). We see from the prop-
(A10) ith the dark stat&6). W f h
. Q, 2(w— wg) erties
|0y =UoNo| |1) =~ 7~ [2)+ Wﬂpl?» . (A6)
Cc Cc
&N——NNZ—E(? Do N NNz (AL2
which is called a dark sta{d.7]. Here we have separated the ~ “t'" ™ o0 . o, MO, (A12)
rapid oscillations of the atom at the optical transition fre-
quencies from the slower atomic dynamics, that |¢) satisfies the differential equation
1 0 0 R
Op=|0 ez 0o | (A7) iho )y =H|y) + i3 1)[3). (A13)
—iwgt
0 0 e Consequently, the vectqA10) describes correctly the dy-

namics of the atom in the lower-level subspace. Therefore,
e atom remains in the dark statd10), as long as the
om’s evolution does not leads to an overpopulation at the
rtop level |3). The initial relaxation-dominated regime has
Srepared the dark state, but later the atom follows dynami-
cally without relaxatior{19].

pas=(3|p|3)<1. (A8) In response to_the_light fields_, the evolving atoms con;ti—

tute a macroscopic dipole density called the matter polariza-

Consider the statistical purity fi€). A quantum system is in tion P». Consider a one-dimensional model for light propa-
a pure state if and only if the purity is unif#6]. We apply ~ 9gation. The matter polarization influences the probe light
the master equationA3) and see that the purity does not according to the wave equation
change significantly,

dtr{p?} =2tr{pdp} =4[ y2(1—p11) + v2(1— p2) Ipadt,

Suppose that a dominant and monochromatic control bea
has, after relaxation, prepared the atom in the stationary sta g
(A6). How will the atom evolve when the control and probe
strengths vary? First we show that the atom remains in a pu
state, as long as th8) component is small,

(32— C?02)E=—g, '92Px. (A14)

Each atom generates a dipole momenteftr{p|1)(3|}/2,
(A9) oscillating at positive frequencies, that contributes to the to-
tal dipole density. Therefore, a medium witla atoms per
Yolume generates a matter polarization with the positive-
‘?requency component

once the atom has occupied a pure state with sparsely pop
lated level|3). Consequently, we can describe the state of th
atom by a vectoty).

Suppose that the control and the probe strengths vary.

How does a dark state follow the light? In the c#48) the (+)_NA _Na —iwgtn4 i &
state vector is dominated by its components in the subspace Ph=7 xafSlYNYIL) = 5 ka1 Qr "% 0,
spanned by the two lower leve|$) and [2). If we find a 5 4

vector |¢) that describes correctly the dynami@s3) in this —n Kig No 0 — i (aQe]) E(H)
subspace, the third componé#t) must be correct as well, Ao r ot e Q| ¢)me

to leading order inp33. The lower ranks enslave the top (A15)

level. Since the relaxation process@s3) do not operate
within the lower subspace, we can ignore dissipation entireI)(N

to find the dominant state of the atom. We write down the\1€"€ Qc=argQC. Assume, .for simplicity, thaf), is real.
state vector Otherwise, we can easily incorporate the phaseof the

control field in the phase of the electric field without affect-
A ) N2 0 ing the wave equatioriA14), as long asf. varies slowly

| )= UON( [1)— Q—p|2)+ Q—*Oiat = |3>) (A10)  compared with the optical frequenay,. We define

c c

Qc
. . K2 Ny k25 %
with the abbreviations g=na—3 P _ _A_;_s “o (A16)
A2goh |Qc|2 2 k7, €0|Ecl’
Q, ‘Qp .

_P_ P eIB, ) ) ) )
Q¢ Q¢ which, as we will see shortly, is the group indé. We get

|Qp|2 ~12 .

No=|1+ 15 2] sglafp<+>~—Nga2wo(iat—wo—i Z) S
(A17)
N=N 'f—z—zmplzda A1l
~ Mo Q12 +[Q?) AL and approximate
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2wo(i<9t—wo)EE)+)“(i¢9t+ wO)(iat_wO)EE)+) We obtain the set of modd§0) with
=— (9 + wp)EL. (A18)
+_ e(z) _77_”/2\/_ . . .
In this way we obtain from the general wave equatian4) Ugr B e Koz J=iu(kZ)explikx+ikyy —iwt),
an equation that is valid for both the positive and the nega- 0
tive frequency component of the probe light,
[72— C22+ N&(dad + awd)|Ey=0. (A1) U 00 =Ur (%),
The dark-state dynamics may lead to a nonlinear saturation
of the medium, described by tmq‘)‘ factor in the wave equa- W= 1 (Us—e~ ™)
tion (A19). The nonlinearity is relevant when the Rabi fre- RO f1—e 2w R RD
quencieg Q| and|(.| are comparable. When the probe is
significantly weaker than the control light, the medium re- . B
sponds linearly, Wi (X) =Wg(—X), (B3)

[3(1+ a)d,—C2F>+ awf]E,=0. (A20)

and Ay=27/ky and ky=wg/c. Armed with the three-
We have derived the wave equati¢®). The group index dimensional modes, we turn to calculating the energy flux.
(A16) determines the group velocity,=c/(1+a). Re- The Poynting vector of light is the time-averaged expectation
markably, the lower the intensity of the control beam is, thevalue of the normally ordered Poynting operata2]
slower the probe light becomes. Taken to the extreme, light
freezes when the control light is switched off—a paradoxical
behavior that is only possible in a dynamical regifaé]: a P= lim
control beam of moderate intensity first captures the probe 1. 2T J-71
light, slowing it down, and then, by ramping down the con-
trol intensity, freezes the probe pulse. Equally paradoxically, _ ., » o xa at ok ata A\ A3+ 43
the nonlinearity of the EIT medium is stronger, the weaker fic J' j (W VW5 8,85 Wy VWwoa,82:)d%0:0%
the control beam is. We show in Appendix B that the unusual
nonlinear optics in an EIT medium matters in a slow-light — _ﬁc2f (WVW* +W* Vw)nd3q
catastrophe.

1 +T

(:~he2( ) (V):)dt

APPENDIX B: ESTIMATIONS =ﬁ0f 2w?qglw|?nd3q. (B4)

In this appendix we estimate the effect of a slow-light
catastrophe, using the experimental parameters of Rigk.

[15]. We calculate the photon flux in the far field and esti-In the last step we have utilized the fact that tenodes

approach plane wave®l) far away from the horizon. In
View of the narrow bandwidth of EIT we can replaceby

mentally the quantum radiation of the catastrophe, the ﬂu}fhe resonance frequenay,. Consider a radiating surface
should be sufficiently strong. Close to the horizon, eVen ith areaA observed from the distanceunder the angle.

slightly detuned slow light leaves the absorptionless trans.-l.he range of wave vectors contributing to the fi(Bd) is

parency window of EIT, unless the medium becomes nonlln'restricted to lie within the solid angle of the surface,

ear. The intensity near the horizon determines whether thﬁ cos®/r2. In the line of sight we thus get the Poynting-
nonlinearity or the absorption dominates. vector cohponent

First we generalize our one-dimensional model of the
slow-light catastrophe to the three dimensions of space in

Cartesian coordinates=(x,y,z). The spatial profile of the A cosd
group index shall be uniform ix andy and parabolic irz PZﬁWoTZCwoJ lw|*ndq
with the scalea. The propagation of slow light is governed
by the wave equation A cosd
5 = hon o

©=0. (B1)

92— c?V2+ %(aerwS) 1—g-2me
X f ——(e™+e ™) %dg,  (BY

We find the stationary solutions and normalize them accord-

ing to the scalar product

having applied the asymptotid®1). We employu as the

integration variable, Withu,(ﬁﬂlaq)=a2k§, and obtain in

terms of the critical detuning64) the photon flux

2

a
1+ d®x. (B2)

(e1,02)=I J (@1 12— @20107 )
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P A cosd The ratioQ), /() of the Rabi frequenciegA4) determines
hon r_z)\z_w05o whether nonlinear effects dominate near the horizon. We cal-
0 0 culate ), using the results of the linear theory. Strictly
4 (o , I speaking, Rabi frequencies refer to classical fields. Here we
X;fo (1—e “"#)(e™+e ™) “udu regard the time-averaged and normally ordered expectation
value of the quantum intensiiﬁg as being proportional to
_ Acosd s QFZ). Comparing Eq(1) of Ref.[15] with our Eq.(A16) we
- r2)\02 ®@0%70, find a relation between the Rabi frequency and the intensity,
2 7T2 2 SOES
= - — X _Z P 3 2
7o ;g(mz 24). (B6) Q,=(3 103)< Fra m® HZ?, (B9)

The flux integrated over the two half spheres around thdor the atomic transition employed in the experiments of
radiating surface gives the total photon-production rate  Refs.[13], [15]. We expresg‘gp in terms of the fieldg in
units of the vacuum noise, and get

fw/zprz A
N=4 —sinddd= — wydp2 . B7
™ o g )\gwo 047 7o (B7) <

N = 1 (+7T

o ">= lim ﬁf w0<:¢2:>dt=2wof |w|?nd3q.
For light in the optical spectral rangemq7, is about 4 Toe T B10
X 10 Hz. Assuming a critical detuning, of 10 1% a sur- (B10)
face of 18X, could generate a large number {() of pho-  ¢jose to the horizon the waves obey the asymptotics
tons per second. Usually a photodetector captures only a

small solid angle of the radiation emitted from a localized koz 1—e ™ sinh( )

source, and a detector is not perfectly efficient in counting all |l w|2~ onllte ™ e p ) (B11)
photons. Yet the radiation of the slow-light catastrophe 0 K

seems to be strong enough to be detectable. as we find from the definitioB3) and the behaviot38) of

Let us estimate the strength of the control field needed tQ,. gessel functions utilizing Eq. 1(8) of Ref.[33] for the
generate the flux we have calculated. We calibrate the field_ .- fnctior! —I'(x+1). We obtain

strength in terms of a Rabi frequen@4). According to Eq.

(64), a critical detunings, of 10 1° corresponds to a length e B2 " 7
scalea~ (5x 10°)\, of the group-index profilg30). In the < 0 ”> zzwozwf |W|2ﬁTMZdM:327T(1_|n 2) 80—z
experiment of{13] a group index of 10is generated by a hawg 0 a‘ky Ao

control field with Rabi frequency).=(2.57x27) MHz

~16 MHz. The group index is inversely proportionalﬂﬁ, (B12)
which leads to a Rabi frequency), of about (5

X 10*\/&) MHz. For the profile(30) of our slow-light catas- 2nd: consequently,

trophe we find thaf). should grow linearly by 10 MHz per
wavelength distance away from the horizon, Q,~86 \E MHz (B13)
. v
z
chlo)\_o MHz. (B8) Therefore, the Rabi frequenci€l, and (). are comparable

at a distance of about half a wavelength away from the ho-
Probably 10-100 wavelengths are sufficient to establish thezon. Here a critical detuning of 13° lies still within the
wave catastrophe. This would take a continuous-wave cortransparency window generated by a control field of 5 MHz

trol field with a maximal Rabi frequency of $010° MHz. Rabi frequency. The EIT medium becomes nonlinear.
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